The Quest for Carbenic Nitrile Imines: Experimental and Computational Characterization of C-Amino Nitrile Imine

Cláudio M. Nunes,[a] Igor Reva,[a] Mário T. S. Rosado,[a] and Rui Fausto[a]

Keywords: Nitrile imines / Structure elucidation / Matrix isolation / Photochemistry / Density functional calculations

C-Amino nitrile imine has been generated as primary photoproduct (λ = 220 nm) of 5-amino-2H-tetrazole isolated in an argon matrix at 15 K. Subsequent photochemical experiments (λ = 330 nm) demonstrated that C-amino nitrile imine isomerizes to the corresponding three-membered-ring 1H-diazirine and decomposes to methylenimine. The experimentally observed ν(CNN) absorption at 1998 cm⁻¹ and a carbenic resonance structure contribution of around 20%, predicted by natural resonance theory calculations, demonstrate that the protoproduced C-amino nitrile imine has significant carbenic character. These results pave the way to the discovery of carbenic nitrile imines.

Introduction

Nitrile imines (R'–CNN–R'') are reactive intermediates known as 1,3-dipoles that participate in 1,3-cycloaddition reactions: versatile reactions used in drug discovery, biological chemistry, and materials and synthetic chemistry.[1–5] One interesting example of the use of nitrile imines is in light-induced click cycloaddition reactions promoted by the decomposition of tetrazoles.[6,7] This powerful reaction method has been applied to the in vivo labeling of proteins and cells, nanomaterial functionalization, and other promising applications.[8–12] Geometric and electronic structures are known to play an important role in the regiochemistry and reactivity of 1,3-dipolar species.[1,2,13–15] Concerning nitrile imines, it is known that they exist as a single minimum on the potential energy surface,[16] which is best described by different resonance structures with different weights (Scheme 1). Usually, one of the resonance structures predominates over the others and is used to describe the geometry, bonding, and reactivity of that particular nitrile imine.[17,18] Nevertheless, the structural nature of nitrile imines has been a subject of continuing debate, and it is not yet completely understood. For instance, using ab initio calculations up to the QCISD level, the parent nitrile imine H–CNN–H was found to have a nonplanar geometry and therefore assumed to be of the allenic type. The hypothetical planar propargylic type, characterized by a linear HCN fragment and a CN triple bond, was found to be the transition state between two equivalent allenic forms.[19] Alternatively, a combination of DFT calculations and natural resonance theory (NRT) analysis has shown that a complete description of nitrile imines requires a combination of four major resonance structures: propargylic, allenic, 1,3-dipolar, and carbenic.[20] Different ways to describe the geometric and electronic structures of the parent nitrile imine have also been reported by means of valence bond (VB) calculations.[13,21]

Scheme 1. Different resonance forms that can represent the structure of a nitrile imine.

Several nitrile imines have been captured in low-temperature matrices and characterized spectroscopically.[16–18,22–28] Substituents were found to have a significant effect on the structural characteristics of nitrile imines. This is particularly noticeable by the CNN antisymmetric stretching IR absorption of the nitrile imine moiety appearing over a wide range of frequencies (2000–2250 cm⁻¹).[17,18] Nitrile imines with an IR absorption above 2150 cm⁻¹, such as Ph–CNN–SiMe₃, Ph–CNN–Ph, and boryl–CNN–boryl, have been described as mainly propargylic, whereas those with an IR absorption between 2000–2100 cm⁻¹, such as H–CNN–H, Ph–CNN–H, Ph–CNN–Me, H–CNN–Ph, and Ph₂C–CNN–CPh₃, have been described as mainly allenic.[17] In addition, theoretical studies have indicated that substituents bearing a lone-electron pair should increase the importance of the carbenic resonance structure of nitrile imines.[20,29,30] For instance, Bégue and Wentrup have theo-
The Quest for Carbenic Nitrile Imines

retically investigated different amino-, hydroxy-, and fluoro-substituted nitrile imines (R–CNN–H, H–CNN–R, and R–CNN–R; R = NH₂, OH, and F) and predicted that some of the studied molecules should exhibit carbenic character. These postulated carbenic nitrile imines were predicted to lack the intense IR absorption in the 2000–2250 cm⁻¹ region that characterizes other nitrile imines. Instead, moderate IR intensities below 2000 cm⁻¹ are expected for carbenic nitrile imines.

A recent preliminary report concerning the characterization of two disubstituted amino nitrile imine derivatives seems to attest the lack of the intense IR absorption in the 2000–2250 cm⁻¹ region, but this also made their experimental identification difficult. Therefore, the question still remains as to whether nitrile imines of predominantly carbenic type can be generated and characterized. Addressing the quest for carbenic nitrile imines, herein we report, for the first time, the experimental and computational characterization of C-amino nitrile imine. The νas(CNN) absorption below 2000 cm⁻¹ and a carbenic resonance structure contribution of around 20%, predicted by natural resonance theory (NRT) calculations, demonstrate that the C-amino nitrile imine has significant carbenic character.

Results

Tautomeric Equilibria in 5-Monosubstituted Tetrazoles – Potential Precursors of Carbenic Nitrile Imines

We started to address the quest for the experimental generation of carbenic nitrile imines by considering the study of the simplest amino and hydroxy C-monosubstituted nitrile imines (R–CNN–H). An efficient way to generate and capture unstable nitrile imines is to photolyze a tetrazole precursor under low-temperature matrix-isolation conditions. Tetrazoles can adopt different tautomeric forms, but only the 2H-tetrazole forms can give a direct access to nitrile imines. Therefore, to ascertain if 5-amino- and 5-hydroxytetrazole are suitable candidates to generate the corresponding nitrile imines, they were structurally characterized theoretically.

Tables 1 and 2 show the relative energies calculated at the B3LYP/6-311+G(d,p) and CBS-QB3 levels of theory for isomers of 5-amino- and 5-hydroxytetrazole, respectively. For 5-aminotetrazole, the results indicated the 5-amino-2H-tetrazole tautomer form (A1) to be the most stable, with the 1H-tetrazole tautomer (A2) found to be around 13 kJ mol⁻¹ higher in energy (Table 1). All the imino tautomeric forms (I1–I3) have very high predicted energies (over 50 kJ mol⁻¹). For 5-hydroxytetrazole, the computations indicated that the oxo form 1H-tetrazol-5(4H)-one (O1) is the most stable tautomer. In comparison, the 5-hydroxy forms of 2H-tetrazole (H1 and H2) and of 1H-tetrazole (H3 and H4) are very high in energy (over 27 kJ mol⁻¹).

It can be anticipated from the calculations that only the 5-amino-2H-tetrazole (A1) and 1H-tetrazol-5(4H)-one (O1) forms would be present in the sublimated vapors of 5-amino- and 5-hydroxytetrazole, respectively. All other tautomers would have negligible populations in the gas-phase equilibrium prior to deposition of the matrix. Therefore, the compound that is nominally called 5-hydroxytetrazole in practice will exist in the matrix as 5-oxotetrazole O1, and its photochemistry will not lead to the formation of the corresponding C-hydroxy nitrile imine. In contrast,
5-aminotetrazole will exist in the 2H-tautomeric form A1, which is a suitable precursor to generate the corresponding nitrile imine. Therefore, the present study focused on the generation and characterization of the previously unknown C-amino nitrile imine.

Infrared Spectrum of Matrix-Isolated 5-Aminotetrazole

The experimental IR spectrum of monomeric 5-aminotetrazole (I) isolated in an argon matrix at 15 K and the simulated theoretical IR spectra of 5-amino-2H-tetrazole (I’”) and 5-amino-1H-tetrazole (I’) are shown in Figure 1. The particularly good agreement between the experimental and theoretical IR spectra of 5-amino-2H-tetrazole (I’”) indicates that only the 2H-tautomer is present in the matrix. This is most clear in the 3600–3400 cm⁻¹ region; three bands observed at 3528, 3478, and 3432 cm⁻¹ have unequivocally been assigned to the NH stretching modes predicted for 2H-tetrazole (I’”) at 3506 [ν(NH₂)], 3464 [ν(N–H)], and 3406 cm⁻¹ [ν(NH₂)]. In contrast, the calculated IR spectrum of 1H-tetrazole (I’) exhibits three vibrational modes at 3479 [ν(NH₂)], 3472 [ν(N–H)], and 3388 cm⁻¹ [ν(NH₂)], the frequency and intensity patterns of which are not compatible with the most intense bands observed experimentally (see also Figure S1 in the Supporting Information). The analysis of the fingerprint range of the IR spectrum also supports the conclusion about the absence of the 1H-tetrazole (I’) form in the matrix.

Photochemistry of Matrix-Isolated 5-Aminotetrazole

The photochemistry of matrix-isolated 5-amino-2H-tetrazole (I’”) was induced by using monochromatic UV light with λ = 220 nm, chosen to match the absorption maximum of I [UV/Vis (ACN): λmax = 218 nm; Figure S2 in the Supporting Information]. Figure 2 shows the result after a total irradiation time of 120 s, when around 50% of I’” was consumed and five different products, labeled as 2–6, were formed (see also Figure S3). The bands due to photoproduct 2 (1998 and ca. 1602 cm⁻¹) appear immediately after the first seconds of irradiation and stop increasing after 120 s, whereas photoproducts 3 (1640 cm⁻¹), 4 (1823 cm⁻¹), 5 (2111 cm⁻¹), and 6 (2031 cm⁻¹) continue to accumulate in the matrix upon further irradiation. This observation indicates that 2 is most likely a primary photoproduct of I’” that is subsequently transformed into the other photoproduct(s). Because the first step in the photochemical reaction of other 2H-tetrazoles was found to lead to nitrile imines by extrusion of N₂,[16,17,23] it is conceivable that photoproduct 2 corresponds to C-amino nitrile imine.

![Figure 1](image1.png)

Figure 1. (a) Experimental IR spectrum of 5-aminotetrazole (I) isolated in an argon matrix at 15 K. IR spectra of (b) 5-amino-2H-tetrazole (I’”) and (c) 5-amino-1H-tetrazole (I’) simulated at the B3LYP/6-311++G(d,p) level of theory. Details of the simulated spectra are given in the Exp. Sect.

![Figure 2](image2.png)

Figure 2. Experimental difference IR spectrum obtained as the spectrum after UV irradiation at λ = 220 nm (120 s, ca. 2 mW) of 5-amino-2H-tetrazole (I’”) isolated in an argon matrix at 15 K “minus” the spectrum of I’” before irradiation. The negative bands are due to consumed I’”, the positive bands labeled 2–6 are the most characteristic bands of the generated photoproducts.

To clearly identify the photoproducts, additional data concerning their IR spectral signatures and their photochemical behavior were obtained. This was achieved by performing subsequent irradiations using longer wavelengths, that is, under conditions under which the tetrazole I’” precursor does not react, but some of the photoproducts can be consumed.[33]

Identification of Products 2–6 from the Irradiation of 5-Aminotetrazole

By applying subsequent irradiations, starting at λ = 400 nm and gradually decreasing the wavelength, it was found that irradiation at around 330 nm started to affect the bands of the photoproducts.[34] The first stage of the irradiation under these conditions during 8 min resulted in the complete consumption of 2 and an increase in 3–5 (Figure 3). From a comparison of the experimental and calcu-
lated IR spectra, photoproduct 2 is clearly identified as C-amino nitrile imine. Particularly characteristic is the band observed at 1998 cm\(^{-1}\), which corresponds to the antisymmetric stretching mode \(v_{\text{as}}(CNN)\) predicted at 1966 cm\(^{-1}\). As mentioned before, this vibration is sensitive to the geometric and electronic characteristics of each nitrile imine. We return to this subject in the next section. Other strong absorption bands of 2 were observed around 1602, 1310, and 1147 cm\(^{-1}\), in good correspondence with the most intense vibrational modes predicted for C-amino nitrile imine at 1618 [\(\delta(NH_2)\)], 1343 [\(\delta(NNH)\)], and 1131 [\(\gamma(NH_2)\)] cm\(^{-1}\). The comprehensive assignments of 11 out of the 12 vibrations expected for the mid-IR spectrum of C-amino nitrile imine 2 are given in Table 3.

In the experimental difference IR spectrum presented in Figure 3b, which shows the increase in bands due to photoproducts 3-5 during the irradiation at \(\lambda = 330\) nm, bands due to methylenimine (HN=CH\(_2\)) were clearly identified and unequivocally assigned to photoproduct 3. The identification was based on a previously reported IR spectrum of methylenimine generated by photolysis of methyl azide isolated in an argon matrix.\(^{[35]}\) The most characteristic IR band of 3 is observed at 1640 cm\(^{-1}\) and corresponds to the \(v(C=N)\) stretching mode. Other strong bands observed at around 1347, 1123, and 1060 cm\(^{-1}\) are also distinctive of the IR spectrum of 3 in an argon matrix. With the exception of the \(v(NH)\) stretching mode estimated at 3261 cm\(^{-1}\), which has a very low predicted IR intensity, all the remaining eight vibrational modes of methylenimine were identified in agreement with previous experimental data and with its calculated IR spectrum (Table 4).

Jacox and Milligan reported that during the photogeneration of methylenimine, from methyl azide, the compound partially decomposes into hydrogen isocyanide (HNC).\(^{[35,36]}\) Indeed, the photoproduct 6, which was simultaneously produced with photoproduct 3 (methylenimine) during the irradiation of 1' at \(\lambda = 220\) nm, was unequivocally identified as HNC. The bands of 6 observed in this work at 3576 (s), 2031 (m), and 537 (br.) cm\(^{-1}\) are in good agreement with the previously reported bands at 3583, 2032, and 535 cm\(^{-1}\) for HNC isolated in an argon matrix at 4 K\(^{[36]}\) and also with the B3LYP-calculated frequencies for this species.\(^{[37]}\)

![Figure 3. (a) IR spectrum of C-amino nitrile imine 2 simulated at the B3LYP/6-311++G(d,p) level of theory. (b) Experimental difference IR spectrum showing changes after irradiation at \(\lambda = 330\) nm (8 min, 35 mW) in an argon matrix (subsequent to the initial irradiation of 1' at \(\lambda = 220\) nm; see Figure 2). The negative bands are due to the consumed photoproduct 2, assigned to C-amino nitrile imine 2. The positive bands are due to photoproducts 3-5.](image)

Table 3. Experimental IR spectral data (argon matrix at 15 K), B3LYP/6-311++G(d,p)-calculated vibrational frequencies (v), absolute IR intensities (\(A^{[0]}\)), and vibrational assignments of C-amino nitrile imine 2.

<table>
<thead>
<tr>
<th>(v) [cm(^{-1})]</th>
<th>(I)</th>
<th>(v^{[0]}) [cm(^{-1})]</th>
<th>(A^{[0]}) [km mol(^{-1})]</th>
<th>Approximate assignment(^{[6]})</th>
</tr>
</thead>
<tbody>
<tr>
<td>3532/3527/3522</td>
<td>m</td>
<td>3514</td>
<td>79.7</td>
<td>(v_{\text{as}}(NH_2))</td>
</tr>
<tr>
<td>3408/3404/3399</td>
<td>w</td>
<td>3355</td>
<td>2.9</td>
<td>(v(NH_2))</td>
</tr>
<tr>
<td>3177</td>
<td>vW</td>
<td>3170</td>
<td>4.3</td>
<td>(v(NH))</td>
</tr>
<tr>
<td>2004/1998</td>
<td>m</td>
<td>1966</td>
<td>124.7</td>
<td>(\delta(NH_2))</td>
</tr>
<tr>
<td>1603/1601</td>
<td>m</td>
<td>1618</td>
<td>36.6</td>
<td>([\delta(NN) - \delta(CN) + \delta(NNH)])</td>
</tr>
<tr>
<td>1405/1400</td>
<td>w</td>
<td>1447</td>
<td>40.3</td>
<td>(\gamma(NH_2))</td>
</tr>
<tr>
<td>1310</td>
<td>s</td>
<td>1343</td>
<td>239.8</td>
<td>(v(NN) + v(CN))</td>
</tr>
<tr>
<td>1147</td>
<td>s</td>
<td>1131</td>
<td>115.4</td>
<td>(\tau(NH))</td>
</tr>
<tr>
<td>989</td>
<td>o</td>
<td>980</td>
<td>13.1</td>
<td>(\tau(NH_2))</td>
</tr>
<tr>
<td>797 or 712/710</td>
<td>w/m</td>
<td>779</td>
<td>69.3</td>
<td>(\tau(NCNN) + [\delta(NCNN) + \delta(NNC)])</td>
</tr>
<tr>
<td>537</td>
<td>m</td>
<td>581</td>
<td>17.5</td>
<td>(\delta(NCNN) - \delta(NCNN))</td>
</tr>
<tr>
<td>n.i.</td>
<td>--</td>
<td>517</td>
<td>21.4</td>
<td>(\omega(NH_2))</td>
</tr>
<tr>
<td>n.i.</td>
<td>--</td>
<td>286</td>
<td>45.9</td>
<td>([\delta(NCNN) + \delta(NNC)] - \tau(NCNN))</td>
</tr>
<tr>
<td>n.i.</td>
<td>--</td>
<td>154</td>
<td>43.2</td>
<td></td>
</tr>
</tbody>
</table>

\(^{[a]}\) C-Amino nitrile imine 2 was generated by irradiation of 5-amino-2H-tetrazole (1') at \(\lambda = 220\) nm in an argon matrix. Experimental spectra were not recorded below 400 cm\(^{-1}\). \(\text{n.i.} = \text{not investigated. Experimental intensities are presented in qualitative terms: } s = \text{strong, } m = \text{medium, } w = \text{weak, } vW = \text{very weak, and } o = \text{overlap.}^{[b]}\) \(\text{Scaled } B3LYP/6-311++G(d,p) \text{ frequencies.}^{[c]}\) Assignments made by inspection of Chemcraft animations: \(v = \text{stretching, } \delta = \text{bending, } \gamma = \text{rocking, } \omega = \text{wagging, } \tau = \text{torsion, } s = \text{symmetric, and } a = \text{antisymmetric. Signs } ’+‘ \text{ and } ’-‘ \text{ designate combinations of vibrations occurring in the } ’\text{syn}‘ (’+‘) \text{ and } ’\text{anti}‘ (’-‘) \text{ phases.}^{[d]}\) The low signal/noise ratio in this region precludes the identification of this band.
Table 4. Comparison of the experimental IR spectrum of photoproduct 3 (argon matrix at 15 K) with a previously reported IR spectrum of methylenimine (argon matrix at 4 K) and with B3LYP/6-311++G(d,p)-calculated vibrational frequencies (ν), absolute infrared intensities (A_{th}), and vibrational assignment of methylenimine 3.

<table>
<thead>
<tr>
<th>This work<sup>[a]</sup></th>
<th>Previous work<sup>[b]</sup></th>
<th>Calculated<sup>[c]</sup></th>
<th>Approximate assignment<sup>[d]</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>ν [cm⁻¹]</td>
<td>I</td>
<td>ν [cm⁻¹]</td>
<td>I</td>
</tr>
<tr>
<td>3039/3035</td>
<td>vw</td>
<td>–</td>
<td>v(NH)<sub>2</sub></td>
</tr>
<tr>
<td>3035</td>
<td>m</td>
<td>3050</td>
<td></td>
</tr>
<tr>
<td>2924</td>
<td>m</td>
<td>2926</td>
<td>s</td>
</tr>
<tr>
<td>1640</td>
<td>s</td>
<td>1641</td>
<td>s</td>
</tr>
<tr>
<td>1453/1452</td>
<td>m</td>
<td>1453</td>
<td>s</td>
</tr>
<tr>
<td>1348/1346</td>
<td>s</td>
<td>1348</td>
<td>s-vs</td>
</tr>
<tr>
<td>1123</td>
<td>s</td>
<td>1123</td>
<td>vs</td>
</tr>
<tr>
<td>1066/1064</td>
<td>m</td>
<td>1063</td>
<td>s</td>
</tr>
<tr>
<td>1061/1059</td>
<td>s</td>
<td>1059</td>
<td>s</td>
</tr>
</tbody>
</table>

[a] Methylenimine 3 generated in this study in an argon matrix. [b] Methylenimine 3 generated by mercury arc lamp irradiation of methyl azide in an argon matrix. [c] Experimental intensities are presented in qualitative terms: vs = very strong, s = strong, m = medium, w = weak, and vw = very weak. [d] Scaled B3LYP/6-311++G(d,p) frequencies. [d] Assignments made by inspection of Chemcraft animations: ν = stretching, δ = bending, γ = rocking, ω = wagging, τ = torsion, s = symmetric, and as = antisymmetric. Signs “+” and “−” designate combinations of vibrations occurring in the “syn” (“+”) and “anti” phases (“−”).

After the complete consumption of C-amino nitrile imine 2, it was found in a second stage of irradiations at λ = 330 nm that 4 was converted into 5 (Figure 4). With the support of calculated IR spectra, the photoproducts 4 and 5 were identified as 1H-diazirine and carbodiimide derivatives, respectively, isomers of 2. The strongest IR vibrational modes of 1H-diazirine 4 were predicted to be at 1853 [ν(C≡N), particularly characteristic], 1592 [δ(NH₃)], and 1220 [δ(CNH)] cm⁻¹ and assigned to the bands observed at 1823, 1582, and around 1221 cm⁻¹, respectively, in the experimental difference spectrum (Figure 4a,b). For carbodiimide 5, the calculations predicted strong IR modes at 2160 [ν_{as}(NCN); particularly characteristic], 994 [ν_{as}(NH₂)], 976 [ν(CNH)], and 815 [ν(NNN)] cm⁻¹, which unequivocally correspond to the bands observed at 2111, 991, 971, and 814 cm⁻¹, respectively, in the experimental difference spectrum (Figure 4b,c).

Mechanistic Discussion of the Photochemistry of Matrix-Isolated 5-Aminotetrazole

The summary of the experimental results obtained for the photochemistry of matrix-isolated 5-amino-2H-tetrazole (1′′) is shown in Scheme 2. Irradiation at λ = 220 nm leads to the formation of C-amino nitrile imine 2, methylenimine 3, 1H-diazirine 4, carbodiimide 5, and hydrogen isocyanide 6. Subsequent irradiation at λ = 330 nm leads to the consumption of 2 and increase in the populations of 3–5. This observation indicates that two different pathways were identified as 1H-diazirine 4 and carbodiimide 5.

Figure 4. (a) IR spectrum of 1H-diazirine 4 simulated at the B3LYP/6-311+G(d,p) level of theory. (b) Experimental difference IR spectrum showing changes after irradiation at λ = 330 nm for 20 min (35 mW; subsequent to the irradiation at λ = 330 nm for 8 min; see Figure 3). The negative bands are due to the consumed photoproduct 4, assigned to 1H-diazirine 4. The asterisks indicate unidentifiable bands at 1513 and 1322 cm⁻¹. The positive bands are due to the growing photoproduct 5, assigned to carbodiimide 5. (c) IR spectrum of carbodiimide 5 simulated at the B3LYP/6-311+G(d,p) level of theory.

Scheme 2. Summary of experimental observations in the UV-induced photochemistry of 5-amino-2H-tetrazole (1′′) isolated in an argon matrix: Generation of C-amino nitrile imine 2 and its photochemical transformation into 5 via 4 and decomposition to 3. The colors of the arrows are related to different wavelengths and irradiation stages: λ = 220 nm (black), λ = 330 nm first stage (red), and λ = 330 nm second stage (green).
are involved in the photochemistry of C-amino nitrile imine 2: (1) Rearrangement to the 4π-electron three-membered ring 1H-diazirine 4 and (2) decomposition involving hydrogen shifts and CN bond cleavage to give methylenimine 3 and N2.

Concerning pathway (1), it shall be recalled that during the first stage of irradiation at λ = 330 nm, the transformation of 2 is accompanied by an increase in both 4 and 5. We hypothesize that C-amino nitrile imine 2 isomerizes to 1H-diazirine 4 concomitantly with the transformation of 4 into carbodiimide 5. Under such circumstances the reaction of 2 to 4 would be faster than the reaction of 4 to 5, in accordance with the predicted difference in the UV/Vis absorptions of these two species (see Figure S4 in the Supporting Information). In fact, as mentioned above, after 2 had been completely consumed, the second stage of irradiation at λ = 330 nm leads to the isomerization of 4 to 5. This is good evidence that C-amino nitrile imine 2 photoisomerizes to 1H-diazirine 4, which in turn isomerizes to carbodiimide 5, following the same trend proposed in our previous work on the photochemistry of matrix-isolated C-methyl and C-phenyl nitrile imines.[16,23]

Concerning pathway (2), it should be noted that the formation of methylenimine 3 was observed in the first stage of irradiation at λ = 330 nm, and could in principle result from either the consumption of C-amino nitrile imine 2 or 1H-diazirine 4. However, its formation via 1H-diazirine 4 can clearly be ruled out, because it is not observed during the second stage of irradiation at λ = 330 nm, in which only 4 is consumed. Interestingly, the formation of methylenimine 3 via C-amino nitrile imine 2 seems to be a new route in the photochemistry of nitrile imines.

Mechanistically, we postulate that the first step in the decomposition of 2 (H2N–CNN–H) involves a [1,3] hydrogen shift from the imine group to the carbon atom. Such hydrogen-atom migration may occur concomitantly with N2 extrusion leading to an aminocarbene intermediate (H2N–C–H), which then rearranges to methylenimine by a [1,2] hydrogen shift from the N atom to the C atom. Alternatively, the [1,3] hydrogen shift may take place initially to form a diazo intermediate [H2N–C(H)=N2], which subsequently releases the N2 molecule to form the aminocarbene intermediate (H,N–C–H), which then rearranges to methylenimine. Although the diazo compound was not experimentally detected, the last mechanism could not be ruled out, because it is well known that diazo compounds readily release N2 when subjected to experimental conditions similar to those used in the present study.[38,39] In turn, the elusive nature of the aminocarbene, even in a low-temperature matrix, is also not surprising. For instance, the parent hydroxycarbene (HO–C–H) is known to rearrange by a [1,2] hydrogen shift to formaldehyde through quantum tunneling in an argon matrix.[40]

Whatever the mechanism for decomposition of the nitrile imine to methylenimine (either a concerted [1,3] hydrogen shift and N2 release or a consecutive [1,3] hydrogen shift and N2 release via a diazo intermediate), the initial [1,3] hydrogen shift from the imine group to the carbon atom is always favored by an increase in the electron density at the carbon atom to which the hydrogen atom migrates. Hence, it seems rather probable that the carbenic character of 2 is crucial to open up the decomposition route to methylenimine 3. It can also be suggested that this might be a more general reactivity pattern distinguishing carbenic-type nitrile imines from allylic- or propargyl-type nitrile imines (bearing a lower electron density at the carbon atom).

Nature of C-Amino Nitrile Imine – Geometric and Electronic Structure Analysis

To gain more insight into the nature of C-amino nitrile imine 2 (H2N–CNN–H), its geometry and electronic structure were analyzed with the aid of theoretical calculations. The parent nitrile imine (H–CNN–H) and C-methyl nitrile imine (H3C–CNN–H) were also investigated to better understand the substituent effect on the carbon atom of nitrile imines.[41] Previous theoretical studies by Bégué and Wentrup indicated the need for post-Hartree–Fock calculations, such as coupled-cluster (CC) methods, to correctly assess the electronic structures of nitrile imines.[30] Thus, the CCSD(T) method was used in the present investigation with the 6-311++G(d,p) basis set, in addition to the standard B3LYP calculations with the same basis set.

Table 5 presents selected optimized geometric parameters as well as experimental vibrational frequencies of the v(ν=CCN) mode for the three nitrile imines obtained by both methods of calculation. Only a single minimum of C1 symmetry was found on the potential energy surface of all three nitrile imines (Figure 5).

<table>
<thead>
<tr>
<th>Nitrile imine</th>
<th>r(CN) [Å]</th>
<th>r(NN) [Å]</th>
<th>θ(RCN) [°]</th>
<th>θ(CNN) [°]</th>
<th>v(ν=CCN) exp[a] [cm⁻¹]</th>
<th>v(ν=CCN) cal[b] [cm⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>H–CNN–H</td>
<td>1.217</td>
<td>1.255</td>
<td>132.8</td>
<td>157.3</td>
<td>1966 (125)</td>
<td>2058[39]</td>
</tr>
<tr>
<td>H3C–CNN–H</td>
<td>1.201</td>
<td>1.267</td>
<td>136.4</td>
<td>168.3</td>
<td>2129</td>
<td>2138[39]</td>
</tr>
</tbody>
</table>

[a] The v(ν=CCN) frequency value is not scaled for CCSD(T)/6-311++G(d,p) calculations and is scaled by 0.98 for B3LYP/6-311++G(d,p) calculations. [b] Calculated absolute IR intensities [km mol⁻¹] are given in parentheses. [c] Molecules isolated in argon matrices. [d] This work. [e] See ref.[23] [f] See ref.[23]
lated geometric parameters show a shorter CN bond and a larger RCN bond angle for the C-methyl nitrile imine. A longer CN bond and a larger deviation from linearity of the CNN angle are observed for C-amino nitrile imine. Considering the idealized structures presented in Scheme 3, the geometrical data appear to indicate an increase in propargylic character upon methyl substitution (H3C–CNN–H) and an increase in carbenic character upon amino substitution (H2N–CNN–H), although the geometries of the three nitrile imines seem to be closer to an allenic-type molecule.

Figure 5. Optimized CCSD(T)/6-311++G(d,p) geometries of the nitrile imines R–CNN–H (R = NH2, H and CH3), natural bond orders (black), and nonbonded natural electron populations (lime) from NRT calculations. Atom colors: C (grey), N (blue), and H (white).

The findings obtained in this theoretical analysis agree with the experimental IR data. Taking as reference the parent nitrile imine, with νas(CNN) at 2033 cm–1, methyl substitution leads to an increase in νas(CNN) to 2138 cm–1, whereas amino substitution leads to a decrease in νas(CNN) to 1998 cm–1. As mentioned before, frequencies of νas(CNN) between 2000–2100 cm–1 are known to characterize allenic-type nitrile imines and those above 2150 cm–1 are found for propargylic-type nitrile imines,[16–18] νas(CNN) modes below 2000 cm–1 and with moderate IR intensities are predicted for nitrile imines with significant carbenic character.[30]

Calculations using natural resonance theory (NRT) were performed on the three considered nitrile imines (R = H, CH3, NH2) to determine the weights of the important resonance hybrids (more details are given in the Exp. Sect.). The results of the NRT analysis using the wavefunctions calculated at the CCSD(T)/6-311+G(d,p) level for the fully optimized geometries of the three nitrile imines are given in Table 6. Only resonance hybrids with contributions greater than 2% are presented. Figure 5 shows bond orders and nonbonded lone-pair electron populations obtained from these calculations. The corresponding results calculated at the B3LYP level of theory are given in the Supporting Information.

Table 6. Resonance structure contribution [%] from NRT analysis calculated at the CCSD(T)/6-311+G(d,p) level of theory for nitrile imines R–CNN–H (R = NH2, H, and CH3).

<table>
<thead>
<tr>
<th>Nitrile imine</th>
<th>Propargylic</th>
<th>Allenic</th>
<th>Carbenic</th>
<th>1,3-Dipolar</th>
</tr>
</thead>
<tbody>
<tr>
<td>H3C–CNN–H</td>
<td>23</td>
<td>40</td>
<td>19</td>
<td>10</td>
</tr>
<tr>
<td>H–CNN–H</td>
<td>43</td>
<td>49</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>H2N–CNN–H</td>
<td>52</td>
<td>32</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

The results of the NRT analysis corroborate the previous interpretation based on the geometrical parameters and vibrational frequencies of the CNN moiety of nitrile imines. The parent nitrile imine (R = H) is described in terms of two resonance hybrids; the major contributor with a weight of 49% corresponds to the allenic hybrid and the other contributor with 43% weight corresponds to the propargylic hybrid. Upon methyl substitution, the propargylic resonance hybrid becomes the major contributor with 52% weight; a significant 32% weight of the allenic hybrid also contributes to the description of the C-methyl nitrile imine. Upon amine substitution, the contribution of the propargylic hybrid decreases considerably to 23% and, although the allenic hybrid is the major contributor with 40% weight, a new important contribution from the carbenic hybrid with around 20% weight characterizes C-amino nitrile imine (with also ca. 10% of the 1,3-dipole hybrid).

The electronic structure analysis agrees well with the data of natural bond orders and nonbonded natural electron populations also obtained from NRT calculations (Figure 5). For instance, the lone-pair occupancy of the nitrile imine C atom increases on going from methyl (0.46e) to amino substitution (0.66e; along with a decrease in the CN bond order and an increase in the NN bond order), which reflects the decrease in the contribution of the propargylic character and the increase in both the allenic and carbenic character, both characterized by the existence of lone-pair electrons of this carbon atom. The occupancy of the lone-pair of the terminal N atom of the CNN fragment decreases on going from methyl (1.56e) to amino substitution (1.36e), which also reflects the decrease in the propargylic character, characterized by the existence of negative charge of this ni-
hydrogen atom. Finally, the lone-pair population of the central N atom of the CNN fragment was found to be only relevant in the C-amino nitrile imine (0.32e). Interestingly, this seems to reflect the importance of the carbene contribution (ca. 20%) in the C-amino nitrile imine (and possibly also some degree of the 1,3-dipolar contribution). The fact that C-amino nitrile imine shows significant carbenic character, in contrast to its absence in the parent nitrile imine and C-methyl nitrile imine, may be due to the p-electron-donating effect of the NH2 group, which is known to dramatically enhance the stability of carbene species.\[42\] Indeed, the low lone-pair population on the amino nitrogen (0.70 e) and high H2N–C bond order (1.31) seem to reflect this p-electron-donating effect.

Conclusions

5-Aminotetrazole (1) was sublimated at 330 K, and its vapors were isolated in an argon matrix at 15 K and characterized by IR spectroscopy. Under these experimental conditions only the 2H-tautomeric form 1'' was found in the samples, in agreement with the theoretical predictions of the relative energies of isomers of 1. Photolysis of 1'' in an argon matrix at \(\lambda = 220 \) nm allowed the capture of C-amino nitrile imine 2 as the primary photoproduct. The identification of 2 as C-amino nitrile imine was unequivocally confirmed by its IR spectrum, which was characterized in detail during subsequent photochemical experiments at \(\lambda = 330 \) nm. These experiments also revealed two different pathways for the photochemistry of C-amino nitrile imine 2: (1) isomerization to the corresponding three-membered ring 1H-diazirine 4 (which rearranges to carbodiimide 5) and (2) decomposition to methylenimine 3 (which gives hydrogen isocyanide 6). The observed isomerization route to 1H-diazirine 4 confirms the findings of our previous investigations on other nitrile imines,\[16,23\] whereas the decomposition route to methylenimine 3 is reported here for the first time. We hypothesize that the carbenic character of 2 is crucial to open up the decomposition pathway to 3, because it can be expected to increase the negative charge at the C atom to which the hydrogen atom migrates in the first stage of the decomposition process.

The experimental frequency of the \(\nu_{\mathrm{CN}}(\mathrm{CNN}) \) mode of C-amino nitrile imine 2 at 998 cm\(^{-1}\) stands apart from other nitrile imines (one of the lowest values observed so far), which indicates that 2 should have considerable carbenic character. This was corroborated by the calculated optimized geometry of the molecule, particularly when compared with those of the parent nitrile imine and the C-methyl-substituted derivative. This conclusion is supported by the analysis of the electronic structure using natural resonance theory (NRT), which shows that 2 has a contribution of around 20% of the carbenic resonance hybrid, contrasting with its absence in the parent nitrile imine and C-methyl nitrile imine (which can be described only by contributions of propargylic and allenic resonance hybrids). The p-electron-donating effect of the NH2 group is most likely the key to the carbenic character of C-amino nitrile imine 2.

The quest for carbenic nitrile imines has been an almost unexplored topic. Our results demonstrate that C-amino nitrile imine 2 has significant carbenic character, yet not to a point at which it could be considered a predominantly carbenic nitrile imine. Further studies with different substitution models need to be carried out to ultimately generate nitrile imines with dominant carbenic structure. This knowledge may lead to the synthesis of stable carbenic nitrile imines and the discovery of a new reactivity pattern for this 1,3-dipolar species.

Experimental Section

Sample: A commercial sample of 5-aminotetrazole (I; TCI Europe, 98%) was used.

Matrix Isolation IR Spectroscopy: To prepare low-temperature matrices, a solid sample of 5-aminotetrazole (I) was sublimated (at ca. 330 K) by using a miniature glass oven connected to the vacuum chamber of a cryostat. The vapors of I were co-deposited with a large excess of argon (N60, Air Liquide) onto a CsI window cooled to 15 K. The temperature of the CsI window was measured directly by a silicon diode sensor connected to a digital controller providing stabilization accuracy of 0.1 K. A closed-cycle helium refrigeration system was used in the experiments. The IR spectra were recorded with a resolution of 0.5 cm\(^{-1}\) by using a Nicolet 6700 FTIR spectrometer equipped with a deuterated triglycine sulfate (DTGS) detector and a Ge/KBr beam splitter. To avoid interference from atmospheric H2O and CO2, the sample compartment of the spectrometer was modified to accommodate the cryostat head and allow purging of the instrument by a stream of dry air.

UV Laser Irradiation Experiments: The matrices were irradiated through an outer quartz window of the cryostat by using a tunable narrow-band frequency-doubled signal beam provided by an optical parametric oscillator (fwhm \(\approx 0.2 \) cm\(^{-1}\), repetition rate = 10 Hz, pulse energy = 1–3 mJ, duration = 10 ns) pumped with a pulsed Nd:YAG laser.

Theoretical Calculations: Calculations at the DFT and CCSD(T) levels of theory were performed as implemented in Gaussian 09\[43\] and GAMESS,\[44\] respectively. Geometry optimizations followed by vibrational frequency calculations were performed at the B3LYP/6-311++G(d,p), CBS-QB3, and CCSD(T)/6-311++G(d,p) levels of theory. The nature of the stationary points was confirmed by analysis of the corresponding Hessian matrices. The harmonic vibrational frequencies calculated at the B3LYP/6-311++G(d,p) level of theory were scaled by 0.98 (below 3150 cm\(^{-1}\)) and by 0.950 (above 3150 cm\(^{-1}\)) to correct for vibrational anharmonicity, basis set truncation, and the neglected part of the electron correlation.\[45,46\] The scaled frequencies together with the calculated IR intensities were then used to simulate the spectra by convoluting each peak with a Lorentzian function with a full width at half maximum (fwhm) of 1 cm\(^{-1}\), and keeping the integral area of the simulated band equal to the theoretically calculated IR intensity.\[47\] As a result of the broadening, the peak intensities of the simulated absorption bands are automatically reduced compared with the calculated intensities (and then are shown in arbitrary units of “relative intensity”).

NBO and NRT Calculations: Bond orders and electron populations were calculated by the natural bond orbital (NBO) theory.\[48\] NBO...
theory provides a representation of the molecular electronic configuration based on the classic localized Lewis bonding theory. It provides an amenable rationalization of the wavefunction obtained from electronic structure calculations in terms of Lewis bonding and antibonding orbitals as well as non-Lewis extra-valence Rydberg orbitals.\(^\text{[99]}\) The goal of the NBO algorithm was to find the idealized natural Lewis structure corresponding to the localized wavefunction \(\Psi^{(L)}\) formed from doubly occupied Lewis-type NBOs. This is often inadequate for systems with strong electron delocalization, in which such effects appear as an average of multiple resonance structures \(\alpha\), as suggested by the original theory of Pauling and Wheland.\(^\text{[50]}\) In those systems, the localized density matrix \(D^{(L)}\) is not a suitable approximation to the true delocalized density matrix \(D^{\text{true}}\). Natural resonance theory (NRT) applies the resonance concept building on the general NBO method,\(^\text{[49,51–53]}\) searching for the best set of a number of localized resonance structure wavefunctions \(\Psi^{(L)}\) and associated localized density matrices \(D^{(L)}\) that can be weight-averaged by \(w_\alpha\) to represent the true delocalized density matrix \(D^{\text{true}}\) [Equation (1)].

\[
D^{\text{true}} = \sum_\alpha w_\alpha D^{(L)}_\alpha
\]

(1)

Therefore, in the light of NRT theory, a molecule under study can be regarded as a set of resonance hybrids that can be decomposed into a weighted set of resonance structures. The electronic structure analysis of nitrile imines was carried out within this methodology, using the wavefunctions of fully optimized geometries obtained at the CCSD(T)/6-311++G(d,p) and B3LYP/6-311++G(d,p) levels of theory.

Acknowledgments

This work was supported by the Portuguese “Fundação para a Ciência e a Tecnologia (FCT)”, “Fundação de Desenvolvimento Regional (FEDER)” (via project PTDC/QUI-QUI/118078/2010, FCOMP-01-0124-FEDER-021082), and cofunded by the “Quadro de Referência Estratégica Nacional (QREN-COMPETE-2010, FCOMP-01-0124-FEDER-021082), and cofunded by the CCSD(T)/6-311++G(d,p) and B3LYP/6-311++G(d,p) levels of theory. The authors declare no competing financial interest.

[16] a) We recently discovered a 1,3-dipolar species, the C-phenyl nitrile imine (Ph–CNN–H), that co-exists in two different structures corresponding to different energy minima (see ref.[16b]); b) C. M. Nunes, I. Reva, R. Fausto, D. Bégüe, C. Wentrup, *Chem. Commun.* 2015, 51, 14712–14715.

[31] Bégüe and Wentrup have investigated theoretically different amino-, hydroxy-, and fluoro-substituted nitrile imines, and found that heteroatom substituents with a lone pair stabilize the corresponding carbonic resonance structure of nitrile imines (see ref.[100]). However, the experimental study of C-fluoro nitrile imines was not possible because of the lack of synthetic methods for preparing the corresponding 5-fluorotetrazoles (tetrazoles are precursors used to generate nitrile imines).

[32a] In agreement with what could be expected based on calculated relative energies for different tautomers of 5-aminotetrazole (1) discussed in the section “Tautomeric Equilibria in 5-Monosubstituted Tetrazoles” (Table 1). The 2H-tautomer was also found to be the most stable form in the gas phase and the major or exclusive form deposited in the matrix in several 5-monosubstituted tetrazoles, such as 5-methyl-, 5-phenyl-, and 5-chlorotetrazole (see refs.[16,23,32b]), b) S. C. S. Bugallo, A. C. Serra, L. Lapinski, M. L. S. Cristiano, R. Fausto, *Phys. Chem. Chem. Phys.* 2002, 4, 1725–1731.

[33] It was observed that the photochemistry of 1’ only occurs with irradiation with \(\lambda \leq 260\) nm, also in accord with the UV/Vis spectrum of 5-aminotetrazole (1; Figure S2 in the Supporting Information).
The Quest for Carbenic Nitrile Imines

[34] Our optical parametric oscillator, with a frequency doubling option, has an intrinsic blind spot in the 370–340 nm region. Because of this, irradiation experiments were not carried out in this frequency range.

[37] Scaled B3LYP/6–311++G(d,p) frequencies for the HNC molecule appear at 3617 [ν(NH)], 2053 [ν(NC)], and 484 [δ(HCN)] cm$^{-1}$.

[40] These species were also selected, because they were previously produced in low-temperature matrices (see refs.[23,28]), and the experimental frequencies of the ν_{as}(CNN) mode could be used as complementary information on their structures.

Received: September 4, 2015
Published Online: October 22, 2015